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ABSTRACT

We present a new method of Speaker Adapted Training
(SAT) that is more robust, faster, and results in lower er-
ror rate than the previous methods. The method, called
Inverse Transform SAT (ITSAT) is based on removing the
di�erences between speakers before training, rather than
modeling the di�erences during training. We develop sev-
eral methods to avoid the problems associated with invert-
ing the transformation. In one method, we interpolate the
transformation matrix with an identity or diagonal trans-
formation. We also apply constraints to the matrix to
avoid estimation problems. We show that by using many
diagonal-only transformation matrices with constraints we
can achieve performance that is comparable to that of the
original SAT method at a fraction of the cost. In addition,
we describe a multi-stage approach to Maximum Likelihood
Linear Regression (MLLR) unsupervised adaptation and
we show that is more e�ective than a single stage regular
MMLR adaptation. As a �nal stage, we adapt the resulting
model at a �ner resolution, using Maximum A Posteriori
(MAP) adaptation. With the combination of all the above
adaptation methods we obtain a 13.6% overall reduction
in WER relative to Speaker Independent (SI) training and
decoding.

1. INTRODUCTION

Many researchers have developed various methods for
speaker adaptation e.g., [3] [5] [7]. These methods can
adapt a speaker independent (SI) model so that it better
models a particular test speaker. Given that the SI model
will always be used with speaker adaptation, we can �nd
a better \compact" SI model that is most suited to that
purpose. We call this Speaker Adapted Training [1]. The
method �rst �nds the transformation from the SI model
to each of the training speakers, and then �nds a new SI
model that would increase the likelihood of the training
data, given the speaker transformations for all the speak-
ers. This method has been shown to increase the bene�t
for speaker adaptation. Unfortunately, it is very expensive
(both in computation and storage). In addition, the bene�t
over adapting the SI model is small.

A somewhat more intuitive approach to the problem is to
remove the di�erences between speakers before training on
their speech. This can be done in �ve steps on one speaker
at a time: 1. estimate the SDmodel 2. estimate the speaker

transformation, 3. invert the speaker transformation, 4.
apply the inverted transformation to the SD model, 5. ac-
cumulate the inverted model statistics in the usual way. A
direct implementation of this procedure su�ers when the
transformation can not be inverted reliably, for example,
when the amount of training data for a transformation is
insu�cient. We present several solutions to the estimation
problems. In Section 2 we review the basic SAT method.
Section 3 describes the ITSAT procedure. We show in Sec-
tion 4 that the initial ITSAT method makes the same im-
provement as SAT but is far more e�cient. We extend
the ITSAT through the use of diagonal transformations in
Section 5, present results in Section 6, and describe a new
multi-stage adaptation process in Section 7. Finally, we
show the results of application of unsupervised Maximum
A Posteriori (MAP) adaptation.

2. ORIGINAL SAT METHOD

Before we present the details of the Inverse Transform SAT,
it would be useful to describe briey the original SAT pa-
rameter estimation.

As in [1], we assume a set of continuous density HMM tri-
phone models with N states, where the j-th state observa-
tion density is assumed to be a mixture of Gaussians of the
form

bj(ot) =

KX

k=1

cjkN (ot ;�jk ;�jk ) (1)

where ot is the d-dimensional observation vector at time
frame t, K is the number of mixture components, cjk is
the mixture coe�cient for the k-th mixture in state j, and
(�jk;�jk) are the mean vector and the covariance matrix of
the Gaussian k-th component of the j-th state distribution.

The SAT re-estimation process is depicted in Figure 1. The
feedback lines indicate that the process can be iterated,
until convergence to the optimal point is obtained. Each
iteration of SAT consists of two phases, the adaptation-
training-estimation (ATE) phase, and the synchronization
(SYNC) phase.

In the i-th iteration of SAT, the SI model �i�1 from the
prior iteration is adapted to each of the speakers in the
training set. For the �rst iteration (i = 1), �0 is initial-
ized to a su�ciently trained SI model. During the adap-
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Figure 1: Block diagram of original SAT method

tation phase, the SI means are mapped to the unknown
speaker dependent (SD) means by a linear regression trans-

form G
(s)

i�1 =
�
W

(s)
; �

(s)
�
as follows

�
(s)

jk
=W

(s)
�jk + �

(s) (2)

where W (s) is a d� d transformation matrix and �
(s) is an

additive bias vector. The index i�1 in G
(s)

i�1 indicates that
this transformation is estimated from the adaptation data
during the prior iteration of SAT, using the Maximum Like-
lihood Linear Regression (MLLR) method [5]. For the �rst

iteration of SAT, G
(s)

0 is initialized to the identity trans-

form (W (s) = Id and �
(s) = 0) 1.

The adaptation of �i�1 to speaker s produces a SD model

�
(s)

i�1 which in turn is used as the seed model for training on
the speaker data using the forward-backward algorithm [2].

The resulting model �
(s)

i together with the original SI model
�i�1 are fed forward to the estimation stage, where the

transformation G
(s)

i is estimated using MLLR. This com-
pletes the ATE phase of the SAT process.

The SYNC phase is not executed until models �
(s)

i and

transformations G
(s)

i have been obtained for all the speakers
in the training set, that is, the original SATmethod requires
for each speaker s the storage of the parameters of its model

�
(s)

i and its transformation G
(s) = (W (s)

; �
(s)), in order to

re-estimate the means and variances of the SI model. This
is a signi�cant requirement of disk space and I/O operations
per speaker. In the next section we show how the ITSAT
method reduces these requirements with no signi�cant loss
in performance.

3. INVERSE TRANSFORM SAT

The Inverse Transform SAT (ITSAT) is depicted in Figure
2. The �rst thing that one can notice from the schematic

1In what follows, we shall assume that the speaker speci�c
transformation consists of a single regression matrix for simplic-
ity. It is possible, however, to de�ne regression classes and asso-
ciate a regression matrix with each class.

diagram is the lack of a synchronization stage, which is the
main advantage of this method. Each iteration of ITSAT
performs exactly the same steps as the ATE phase of the
original SAT method, but as soon as the speaker transform
has been estimated, it is inverted and applied to the means

of the speaker model �
(s)

i , producing the model �̂
(s)

i . The
transformed means are accumulated over all the speakers
in the training, producing the new SI model �i.
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Figure 2: Block diagram of ITSAT method

In particular, we compute an inverse transform G
(s)

i

�1
=

(Ŵ (s), �̂(s)), from the SD model to the SI model, and we
apply it to the means as follows

�̂
(s)

jk = Ŵ
(s)~�

(s)

jk + �̂
(s) (3)

where �̂
(s)

jk and ~�
(s)

jk denote the transformed mean and SD
mean of the k-th Gaussian component of the j-th state dis-
tribution, respectively.

The transformed means are accumulated and the SI model
parameters are re-estimated as follows

�jk =

PS

s

(s)

jk �̂
(s)

jkPS

s

(s)

jk

(4)

�jk =

PS

s

(s)

jk [
~�
(s)

jk + (�̂
(s)

jk � �jk)(�̂
(s)

jk � �jk)
T ]

PS

s

(s)

jk

(5)

where 
(s)

jk is the expected number of times the system is

in state j using the k-th mixture component 2.

3.1. Inversion of transform.

In order to compute the inverse transform G
(s)�1

i we need

to invert the matrix W
(s). Experiments showed that W (s)

2
(s)

jk
is also termed as mass of the k-th component of the j-th

state distribution for speaker s



may be ill conditioned for some speakers, so even small
roundo� errors that can occur during the inversion of the
matrix can have a drastic e�ect on the computed inverse,

and consequently, on the transformed means �̂
(s)

jk . One way

to alleviate this problem is to smooth the matrix W
(s) be-

fore computing the inverse. For example, W (s) can be in-
terpolated with the d � d identity matrix Id to obtain a
smoothed matrix ~W (s) as follows

~W (s) = �Id + (1� �)W (s) (6)

where 0 � � � 1 is a parameter that depends on the con-
ditioning of W (s) (it is an increasing function of the condi-

tioning of W (s)).

In section 5, we show that the robustness of the inverse
transform is very crucial to the success of the ITSAT
method, and we propose the use of robust diagonal trans-
formation matrices.

4. COMPARISON BETWEEN ORIGINAL SAT

AND ITSAT

To compare the disk space requirements between the two
methods, assume that we have N states with K Gaussian
mixture components per state, d-dimensional feature vec-
tors, and a total of S speakers in the training data. Each
speaker model has NK Gaussian mean and variance vec-
tors (variances are diagonal matrices), and NK masses, for
a total of NK(2d+ 1) elements. Each speaker transforma-
tion has d(d+ 1) elements.

Both methods need to store the speaker transformations at
the end of the estimation (MLLR) stage, with a total cost
of Sd(d+1) elements. The savings from ITSAT come from
the fact that it needs to store only one set of model parame-
ters (the accumulated masses, means and variances), while
the SYNC stage in the original SAT method requires the
intermediate storage of all individual speaker model param-
eters. In ITSAT, the accumulated model has NK(2d + 1)
elements. In the original SAT method, the total required
space for the model parameters is SNK(2d + 1). Thus,
the savings in disk space and I/O operations from the IT-
SAT method are proportional to the number of speakers in
the training set. As an example, consider training on 2000
speakers using the original SAT method. In our typical
State Clustered Tied Mixtures (SCTM) system, N = 3000,
K = 64, and d = 45. If each vector element is represented
with 4 bytes, then the original SAT method would require
a total of 73 GBytes of disk space. On the other hand, the
ITSAT method would require only 53 MBytes.

It is important to note that the savings in disk space and
I/O from the ITSAT method come with no signi�cant loss
in recognition performance. Table 1 shows the word error
rates of two SAT models. The models were trained on ap-
proximately 11 hours of male speech, collected from 300
speakers from the Hub-4 1996 Broadcast News (BN) cor-
pus, and adapted to the Hub-4 1996 UE development test

speakers using unsupervised MLLR adaptation with two re-
gression classes de�ned per speaker. The two models were
based on our Phonetically Tied Mixture (PTM) HMM,
which is a triphone-based continuous density HMM system
where all allophone models of each of the 46 phonemes of
the system are modeled by a mixture density of 256 Gaus-
sian components.

Acoustic training paradigm WER
Original SAT 34.24
ITSAT few full matrices + identity smoothing 34.31

Table 1: Word Error Rate (%) comparison between original
SAT and ITSAT (optimized PTM nonxword results)

In the following section we show that the performance of
ITSAT can be improved by making the inversion of the
transform more robust.

5. ROBUST ESTIMATION BASED ON

DIAGONAL COMPUTATION

Since the amount of speech from an individual speaker is
usually small, the key issue here in ITSAT is to make ro-
bust estimates of the inverted transformation matrices for
each speaker especially when there is not much speech avail-
able. Even with enough speech, the estimated transforma-
tion could still be ill conditioned due to the presence of
background noise, music or long period of silence.

In our �rst implementation of ITSAT the interpolation pa-
rameter was a linear function of the conditioning of the
transformation matrix. This was enough to make the in-
version reasonable [6], but we �nd that we can get a better
result by using a sigmoid-like function for the interpolation
parameter. The result improves further if we use a diago-
nal transformation matrix for the interpolation instead of
an identity matrix:

~W (s) = �D
(s) + (1� �)W (s) (7)

Here D(s) is separately estimated with the assumption that
the transformation only includes scaling and translation [5].
As we constrain the transformation matrix to be diagonal,
the number of parameters is reduced to 90, but it allows
considerably more power than just a vector shift. Diagonal
matrices have been compared with full matrices by several
researchers [7], and the result has generally been that the
full matrices are more powerful, even when the number of
diagonal matrices is allowed to be large. This is proba-
bly because each full matrix speci�es a smooth continuous
transformation, while the transformation is not continuous
between the diagonal transformations. In the ideal case, the
full matrixW (s) should work better than the diagonal-only
D

(s) in ITSAT. But given that we can't estimate most full
transformation matrices accurately, we could prefer using
D

(s) for its simplicity and robustness. This is especially the



case for ITSAT where a large number of individual transfor-
mation matrices need to be inverted. The diagonal trans-
formation matrices can be estimated more robustly and are
trivial to invert, so no smoothing is necessary. The compu-
tational overhead is also comparable to using only a few full
transformation matrices, since a diagonal matrix can be es-
timated in a small fraction of the time required to estimate
a full one. In addition, it is very easy to specify reason-
able constraints for the values of a diagonal transformation.
Speci�cally, the linear term should always be positive and
not too far from 1, while the translation should be in the
neighborhood of 0.

By restricting to diagonal-only transformations, we are able
to adapt at a much �ner grain resolution by estimating a
large number of robust diagonal transformation matrices.
We achieved an additional 1.7% relative gain by using 256
diagonal transformations instead of a few full matrices. In
summary, ITSAT based on diagonal transformation pro-
vides more WER reduction and requires far less computa-
tion and storage.

6. EXPERIMENTAL RESULTS

Table 2 shows the word error rate (WER) of SI and ITSAT
adapted decoding on the male speakers of the 1996 Hub-4
development test set. The training and decoding data sets
are the same as those in the experiment mentioned in table
1. For each condition other than the unadapted SI con-
dition, the trained model is adapted to each test speaker
using MLLR with a few full matrix transformations.

Training paradigm and Transformation type WER
SI unadapted 35.56
ITSAT few full matrices + identity smoothing 31.80
ITSAT few full matrices + diagonal smoothing 31.42
ITSAT 256 diagonal matrices only 31.24

Table 2: Comparison of ITSAT using di�erent transforma-
tion models (optimized SCTM nonxword results).

As the table shows, ITSAT with a lot of diagonal-only
transformation matrices can give more WER reduction
than the alternatives of a few interpolated full matrices.

We tried using diagonal transformations both for ITSAT
and for the adaptation itself. We �nd that the adapta-
tion using diagonal transformations alone is not as good as
that using a full matrix, even though the ITSAT had been
performed using diagonal transformations. We believe the
inversion of the transformation matrices in ITSAT, which
is very sensitive to the variability of estimation, bene�ts
most from the diagonal transformation.

7. MULTI-STAGE TRANSFORMATIONS

In transcription, the adaptation is performed by recogniz-
ing a long passage, then adapting the parameters based on
the recognized answer, and then recognizing again. There
is a tension between using a detailed transformation and
the uncertainty about the transcription. The problem is
that if we base the transformation on the �rst pass recog-
nition, then the transformed model will likely repeat the
same recognition errors. One way to avoid this is to es-
timate a small number of transformations that are each
shared by a large number of model parameters. In this way
a few incorrect estimates (due to recognition errors) will
be outweighed by the coherent correct estimates. But a
small number of transformations is not su�ciently detailed
to make a large improvement in recognition accuracy. An-
other way to reduce the e�ect of recognition errors is to
estimate the probability that each word or phoneme is cor-
rect, and to weight the estimation of the transformations
according to this probability.

In this paper, we propose a new way to deal with the prob-
lem. In the �rst stage of adaptation, we use a small number
of transformations, in order that the e�ect of recognition
error is small. The assumption is that this will generally
move the model in the right direction on a global level.
Next, we apply a more detailed transformation, by allow-
ing more independent parameters in the transformations,
but we must apply some other constraint in order to avoid
learning the recognition errors. Table 3 shows the results
of unsupervised multi-stage adaptation to the Hub-4 1996
UE development test, were we see a 2.6adaptation.

Multi-stage transformations WER
SI 35.56
First stage with 8 transformations 31.24
Second stage with 32 transformations 30.83
Third stage with 128 transformations 30.74

Table 3: E�ect of multi-stage transformations on WER re-
duction (optimized SCTM nonxword results).

8. MAP ADAPTATION

As a �nal stage in our multi-level adaptation, we would
like to adapt the Gaussian means of the model at a �ner
resolution, so that each Gaussian can individually move
closer to its correct position in the corresponding speaker-
dependent model. We therefore estimate priors for MAP
adaptation from the training data as follows: at the last
iteration of ITSAT, after we inverse-transform the means
of each speaker model, we compute the variance between
the speaker means for each Gaussian k. This prior estimate,
pk, is subsequently used in unsupervised adaptation to the
test to independently shift the means of the model based
on Equations 8 and 9

�
0

k = wk(�
ML
k � �k) + �k (8)



where �k is the mean of the unadapted kth Gaussian, �ML
k

is the maximum likelihood estimate of the mean after per-
forming EM on the test data, and wk is the interpolation
weight

wk =
nkpk

vk + nkpk
(9)

where vk is the within-speaker variance for the kth Gaus-
sian, and nk the number of frames aligned to Gaussian k

during the EM training on the recognized transcriptions.

Experiment WER
SI 35.56
Multi-stage MLLR adaptation 30.74
MAP adaptation 30.70

Table 4: E�ect of unsupervised MAP adaptation on WER
reduction (optimized SCTM nonxword results).

Table 4 shows the e�ect of adapting the speaker-dependent
model from the third stage of MLLR, using MAP adapta-
tion. We can see that there is essentially no additional gain
from MAP on top of MLLR. At �rst we suspected that the
reason for this result is the increased freedom that MAP
provides. Since each Gaussian is adapted independently
of the rest, and since the adaptation transcriptions con-
tain recognition errors, it is likely that MAP will exessively
move exessively several Gaussians to the wrong direction.
However, by examining the distibution of the interpolation
weight wk in Equation 8, we found that almost always, the
value of wk is very small, due to the lack of samples in the
Gaussians.

Adaptation Speech WER Mean Variance
7 sec 5355 0.005 0.0004
25 sec 28710 0.018 0.0022
389 sec 49950 0.121 0.0195

Table 5: Statistics of the interpolation weight wk

Table 5 shows the mean and variance of the interpolation
parameter wk for three sample test utterances from the
1996 Hub-4 development test. We can see that even for the
long utterance, the weight wk is quite small, since there is
a large number of Gaussians to adapt and each Gaussian is
assigned less than 1 frame on the average.

9. CONCLUSION

We have described the Inverse Transform Speaker Adapted
Training (ITSAT) method. The method is simpler, more
intuitive, requires far less computation and storage than
the original method of SAT, and results in higher accu-
racy. Higher performance can be achieved by using mul-
tiple stages of MLLR adaptation during both training and
recognition, while the gain from using MAP as a �nal adap-
tation stage is very small due to the sparse nature of the
test data.
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